Symmetry Axis
   HOME

TheInfoList



OR:

Rotational symmetry, also known as radial symmetry in
geometry Geometry (; ) is, with arithmetic, one of the oldest branches of mathematics. It is concerned with properties of space such as the distance, shape, size, and relative position of figures. A mathematician who works in the field of geometry is c ...
, is the property a shape has when it looks the same after some rotation by a partial turn. An object's degree of rotational symmetry is the number of distinct orientations in which it looks exactly the same for each rotation. Certain geometric objects are partially symmetrical when rotated at certain angles such as squares rotated 90°, however the only geometric objects that are fully rotationally symmetric at any angle are spheres, circles and other spheroids.Topological Bound States in the Continuum in Arrays of Dielectric Spheres. By Dmitrii N. Maksimov, LV Kirensky Institute of Physics, Krasnoyarsk, Russia
/ref>


Formal treatment

Formally the rotational symmetry is
symmetry Symmetry (from grc, συμμετρία "agreement in dimensions, due proportion, arrangement") in everyday language refers to a sense of harmonious and beautiful proportion and balance. In mathematics, "symmetry" has a more precise definiti ...
with respect to some or all
rotation Rotation, or spin, is the circular movement of an object around a '' central axis''. A two-dimensional rotating object has only one possible central axis and can rotate in either a clockwise or counterclockwise direction. A three-dimensional ...
s in ''m''-dimensional
Euclidean space Euclidean space is the fundamental space of geometry, intended to represent physical space. Originally, that is, in Euclid's ''Elements'', it was the three-dimensional space of Euclidean geometry, but in modern mathematics there are Euclidea ...
. Rotations are direct isometries, i.e.,
isometries In mathematics, an isometry (or congruence, or congruent transformation) is a distance-preserving transformation between metric spaces, usually assumed to be bijective. The word isometry is derived from the Ancient Greek: ἴσος ''isos'' mea ...
preserving orientation. Therefore, a
symmetry group In group theory, the symmetry group of a geometric object is the group of all transformations under which the object is invariant, endowed with the group operation of composition. Such a transformation is an invertible mapping of the amb ...
of rotational symmetry is a subgroup of ''E''+(''m'') (see
Euclidean group In mathematics, a Euclidean group is the group of (Euclidean) isometries of a Euclidean space \mathbb^n; that is, the transformations of that space that preserve the Euclidean distance between any two points (also called Euclidean transformations ...
). Symmetry with respect to all rotations about all points implies
translational symmetry In geometry, to translate a geometric figure is to move it from one place to another without rotating it. A translation "slides" a thing by . In physics and mathematics, continuous translational symmetry is the invariance of a system of equati ...
with respect to all translations, so space is homogeneous, and the symmetry group is the whole ''E''(''m''). With the modified notion of symmetry for vector fields the symmetry group can also be ''E''+(''m''). For symmetry with respect to rotations about a point we can take that point as origin. These rotations form the special
orthogonal group In mathematics, the orthogonal group in dimension , denoted , is the group of distance-preserving transformations of a Euclidean space of dimension that preserve a fixed point, where the group operation is given by composing transformations. ...
SO(''m''), the group of ''m''×''m'' orthogonal matrices with determinant 1. For this is the
rotation group SO(3) In mechanics and geometry, the 3D rotation group, often denoted SO(3), is the group of all rotations about the origin of three-dimensional Euclidean space \R^3 under the operation of composition. By definition, a rotation about the origin is ...
. In another definition of the word, the rotation group ''of an object'' is the symmetry group within ''E''+(''n''), the group of direct isometries ; in other words, the intersection of the full symmetry group and the group of direct isometries. For
chiral Chirality is a property of asymmetry important in several branches of science. The word ''chirality'' is derived from the Greek (''kheir''), "hand", a familiar chiral object. An object or a system is ''chiral'' if it is distinguishable from i ...
objects it is the same as the full symmetry group. Laws of physics are SO(3)-invariant if they do not distinguish different directions in space. Because of
Noether's theorem Noether's theorem or Noether's first theorem states that every differentiable symmetry of the action of a physical system with conservative forces has a corresponding conservation law. The theorem was proven by mathematician Emmy Noether ...
, the rotational symmetry of a physical system is equivalent to the
angular momentum In physics, angular momentum (rarely, moment of momentum or rotational momentum) is the rotational analog of linear momentum. It is an important physical quantity because it is a conserved quantity—the total angular momentum of a closed syst ...
conservation law.


Discrete rotational symmetry

Rotational symmetry of order ''n'', also called ''n''-fold rotational symmetry, or discrete rotational symmetry of the ''n''th order, with respect to a particular point (in 2D) or axis (in 3D) means that rotation by an angle of 360°/n (180°, 120°, 90°, 72°, 60°, 51 °, etc.) does not change the object. A "1-fold" symmetry is no symmetry (all objects look alike after a rotation of 360°). The notation for ''n''-fold symmetry is ''Cn'' or simply "''n''". The actual
symmetry group In group theory, the symmetry group of a geometric object is the group of all transformations under which the object is invariant, endowed with the group operation of composition. Such a transformation is an invertible mapping of the amb ...
is specified by the point or axis of symmetry, together with the ''n''. For each point or axis of symmetry, the abstract group type is
cyclic group In group theory, a branch of abstract algebra in pure mathematics, a cyclic group or monogenous group is a group, denoted C''n'', that is generated by a single element. That is, it is a set of invertible elements with a single associative bina ...
of order ''n'', Z''n''. Although for the latter also the notation ''C''''n'' is used, the geometric and abstract ''C''''n'' should be distinguished: there are other symmetry groups of the same abstract group type which are geometrically different, see cyclic symmetry groups in 3D. The
fundamental domain Given a topological space and a group acting on it, the images of a single point under the group action form an orbit of the action. A fundamental domain or fundamental region is a subset of the space which contains exactly one point from each o ...
is a sector of 360°/n. Examples without additional
reflection symmetry In mathematics, reflection symmetry, line symmetry, mirror symmetry, or mirror-image symmetry is symmetry with respect to a reflection. That is, a figure which does not change upon undergoing a reflection has reflectional symmetry. In 2D the ...
: *''n'' = 2, 180°: the ''dyad''; letters Z, N, S; the outlines, albeit not the colors, of the
yin and yang Yin and yang ( and ) is a Chinese philosophical concept that describes opposite but interconnected forces. In Chinese cosmology, the universe creates itself out of a primary chaos of material energy, organized into the cycles of yin and ya ...
symbol; the
Union Flag The Union Jack, or Union Flag, is the ''de facto'' national flag of the United Kingdom. Although no law has been passed making the Union Flag the official national flag of the United Kingdom, it has effectively become such through precedent. ...
(as divided along the flag's diagonal and rotated about the flag's center point) *''n'' = 3, 120°: ''triad'',
triskelion A triskelion or triskeles is an ancient motif consisting of a triple spiral exhibiting rotational symmetry. The spiral design can be based on interlocking Archimedean spirals, or represent three bent human legs. It is found in artefacts o ...
, Borromean rings; sometimes the term ''trilateral symmetry'' is used; *''n'' = 4, 90°: ''tetrad'',
swastika The swastika (卐 or 卍) is an ancient religious and cultural symbol, predominantly in various Eurasian, as well as some African and American cultures, now also widely recognized for its appropriation by the Nazi Party and by neo-Nazis. I ...
*''n'' = 6, 60°: ''hexad'',
Star of David The Star of David (). is a generally recognized symbol of both Jewish identity and Judaism. Its shape is that of a hexagram: the compound of two equilateral triangles. A derivation of the ''seal of Solomon'', which was used for decorative ...
(this one has additional
reflection symmetry In mathematics, reflection symmetry, line symmetry, mirror symmetry, or mirror-image symmetry is symmetry with respect to a reflection. That is, a figure which does not change upon undergoing a reflection has reflectional symmetry. In 2D the ...
) *''n'' = 8, 45°: ''octad'', Octagonal
muqarnas Muqarnas ( ar, مقرنص; fa, مقرنس), also known in Iranian architecture as Ahoopāy ( fa, آهوپای) and in Iberian architecture as Mocárabe, is a form of ornamented vaulting in Islamic architecture. It is the archetypal form of I ...
, computer-generated (CG), ceiling ''C''''n'' is the rotation group of a regular ''n''-sided
polygon In geometry, a polygon () is a plane figure that is described by a finite number of straight line segments connected to form a closed '' polygonal chain'' (or ''polygonal circuit''). The bounded plane region, the bounding circuit, or the two ...
in 2D and of a regular ''n''-sided
pyramid A pyramid (from el, πυραμίς ') is a structure whose outer surfaces are triangular and converge to a single step at the top, making the shape roughly a pyramid in the geometric sense. The base of a pyramid can be trilateral, quadrilate ...
in 3D. If there is e.g. rotational symmetry with respect to an angle of 100°, then also with respect to one of 20°, the
greatest common divisor In mathematics, the greatest common divisor (GCD) of two or more integers, which are not all zero, is the largest positive integer that divides each of the integers. For two integers ''x'', ''y'', the greatest common divisor of ''x'' and ''y'' is ...
of 100° and 360°. A typical 3D object with rotational symmetry (possibly also with perpendicular axes) but no mirror symmetry is a
propeller A propeller (colloquially often called a screw if on a ship or an airscrew if on an aircraft) is a device with a rotating hub and radiating blades that are set at a pitch to form a helical spiral which, when rotated, exerts linear thrust upon ...
.


Examples


Multiple symmetry axes through the same point

For discrete symmetry with multiple symmetry axes through the same point, there are the following possibilities: *In addition to an ''n''-fold axis, ''n'' perpendicular 2-fold axes: the
dihedral group In mathematics, a dihedral group is the group of symmetries of a regular polygon, which includes rotations and reflections. Dihedral groups are among the simplest examples of finite groups, and they play an important role in group theory, ...
s ''D''n of order 2''n'' (). This is the rotation group of a regular prism, or regular
bipyramid A (symmetric) -gonal bipyramid or dipyramid is a polyhedron formed by joining an -gonal pyramid and its mirror image base-to-base. An -gonal bipyramid has triangle faces, edges, and vertices. The "-gonal" in the name of a bipyramid does ...
. Although the same notation is used, the geometric and abstract ''D''n should be distinguished: there are other symmetry groups of the same abstract group type which are geometrically different, see dihedral symmetry groups in 3D. *4×3-fold and 3×2-fold axes: the rotation group ''T'' of order 12 of a regular
tetrahedron In geometry, a tetrahedron (plural: tetrahedra or tetrahedrons), also known as a triangular pyramid, is a polyhedron composed of four triangular faces, six straight edges, and four vertex corners. The tetrahedron is the simplest of all ...
. The group is
isomorphic In mathematics, an isomorphism is a structure-preserving mapping between two structures of the same type that can be reversed by an inverse mapping. Two mathematical structures are isomorphic if an isomorphism exists between them. The word i ...
to
alternating group In mathematics, an alternating group is the group of even permutations of a finite set. The alternating group on a set of elements is called the alternating group of degree , or the alternating group on letters and denoted by or Basic prop ...
''A''4. *3×4-fold, 4×3-fold, and 6×2-fold axes: the rotation group ''O'' of order 24 of a
cube In geometry, a cube is a three-dimensional solid object bounded by six square faces, facets or sides, with three meeting at each vertex. Viewed from a corner it is a hexagon and its net is usually depicted as a cross. The cube is the only r ...
and a regular
octahedron In geometry, an octahedron (plural: octahedra, octahedrons) is a polyhedron with eight faces. The term is most commonly used to refer to the regular octahedron, a Platonic solid composed of eight equilateral triangles, four of which meet at ea ...
. The group is isomorphic to
symmetric group In abstract algebra, the symmetric group defined over any set is the group whose elements are all the bijections from the set to itself, and whose group operation is the composition of functions. In particular, the finite symmetric group \m ...
''S''4. *6×5-fold, 10×3-fold, and 15×2-fold axes: the rotation group ''I'' of order 60 of a
dodecahedron In geometry, a dodecahedron (Greek , from ''dōdeka'' "twelve" + ''hédra'' "base", "seat" or "face") or duodecahedron is any polyhedron with twelve flat faces. The most familiar dodecahedron is the regular dodecahedron with regular pentagon ...
and an
icosahedron In geometry, an icosahedron ( or ) is a polyhedron with 20 faces. The name comes and . The plural can be either "icosahedra" () or "icosahedrons". There are infinitely many non- similar shapes of icosahedra, some of them being more symmetrica ...
. The group is isomorphic to alternating group ''A''5. The group contains 10 versions of ''D3'' and 6 versions of ''D5'' (rotational symmetries like prisms and antiprisms). In the case of the
Platonic solid In geometry, a Platonic solid is a convex, regular polyhedron in three-dimensional Euclidean space. Being a regular polyhedron means that the faces are congruent (identical in shape and size) regular polygons (all angles congruent and all edges c ...
s, the 2-fold axes are through the midpoints of opposite edges, and the number of them is half the number of edges. The other axes are through opposite vertices and through centers of opposite faces, except in the case of the tetrahedron, where the 3-fold axes are each through one vertex and the center of one face.


Rotational symmetry with respect to any angle

Rotational symmetry with respect to any angle is, in two dimensions, circular symmetry. The fundamental domain is a
half-line In geometry, a line is an infinitely long object with no width, depth, or curvature. Thus, lines are one-dimensional objects, though they may exist in two, three, or higher dimension spaces. The word ''line'' may also refer to a line segmen ...
. In three dimensions we can distinguish cylindrical symmetry and spherical symmetry (no change when rotating about one axis, or for any rotation). That is, no dependence on the angle using
cylindrical coordinates A cylindrical coordinate system is a three-dimensional coordinate system that specifies point positions by the distance from a chosen reference axis ''(axis L in the image opposite)'', the direction from the axis relative to a chosen reference di ...
and no dependence on either angle using
spherical coordinates In mathematics, a spherical coordinate system is a coordinate system for three-dimensional space where the position of a point is specified by three numbers: the ''radial distance'' of that point from a fixed origin, its ''polar angle'' measu ...
. The fundamental domain is a half-plane through the axis, and a radial half-line, respectively. Axisymmetric or axisymmetrical are
adjective In linguistics, an adjective (list of glossing abbreviations, abbreviated ) is a word that generally grammatical modifier, modifies a noun or noun phrase or describes its referent. Its semantic role is to change information given by the noun. Tra ...
s which refer to an object having cylindrical symmetry, or axisymmetry (i.e. rotational symmetry with respect to a central axis) like a
doughnut A doughnut or donut () is a type of food made from leavened fried dough. It is popular in many countries and is prepared in various forms as a sweet snack that can be homemade or purchased in bakeries, supermarkets, food stalls, and franc ...
(
torus In geometry, a torus (plural tori, colloquially donut or doughnut) is a surface of revolution generated by revolving a circle in three-dimensional space about an axis that is coplanar with the circle. If the axis of revolution does not tou ...
). An example of approximate spherical symmetry is the Earth (with respect to density and other physical and chemical properties). In 4D, continuous or discrete rotational symmetry about a plane corresponds to corresponding 2D rotational symmetry in every perpendicular plane, about the point of intersection. An object can also have rotational symmetry about two perpendicular planes, e.g. if it is the
Cartesian product In mathematics, specifically set theory, the Cartesian product of two sets ''A'' and ''B'', denoted ''A''×''B'', is the set of all ordered pairs where ''a'' is in ''A'' and ''b'' is in ''B''. In terms of set-builder notation, that is : A\ti ...
of two rotationally symmetry 2D figures, as in the case of e.g. the
duocylinder The duocylinder, also called the double cylinder or the bidisc, is a geometric object embedded in 4-dimensional Euclidean space, defined as the Cartesian product of two disks of respective radii ''r''1 and ''r''2: :D = \left\ It is analogous ...
and various regular
duoprism In geometry of 4 dimensions or higher, a double prism or duoprism is a polytope resulting from the Cartesian product of two polytopes, each of two dimensions or higher. The Cartesian product of an -polytope and an -polytope is an -polytope, wher ...
s.


Rotational symmetry with translational symmetry

2-fold rotational symmetry together with single
translational symmetry In geometry, to translate a geometric figure is to move it from one place to another without rotating it. A translation "slides" a thing by . In physics and mathematics, continuous translational symmetry is the invariance of a system of equati ...
is one of the
Frieze group In mathematics, a frieze or frieze pattern is a two-dimensional design that repeats in one direction. Such patterns occur frequently in architecture and decorative art. Frieze patterns can be classified into seven types according to their symmetri ...
s. There are two rotocenters per primitive cell. Together with double translational symmetry the rotation groups are the following
wallpaper group A wallpaper is a mathematical object covering a whole Euclidean plane by repeating a motif indefinitely, in manner that certain isometries keep the drawing unchanged. To a given wallpaper there corresponds a group of such congruent transformatio ...
s, with axes per primitive cell: *p2 (2222): 4×2-fold; rotation group of a
parallelogram In Euclidean geometry, a parallelogram is a simple (non- self-intersecting) quadrilateral with two pairs of parallel sides. The opposite or facing sides of a parallelogram are of equal length and the opposite angles of a parallelogram are of equa ...
mic,
rectangular In Euclidean plane geometry, a rectangle is a quadrilateral with four right angles. It can also be defined as: an equiangular quadrilateral, since equiangular means that all of its angles are equal (360°/4 = 90°); or a parallelogram containin ...
, and rhombic
lattice Lattice may refer to: Arts and design * Latticework, an ornamental criss-crossed framework, an arrangement of crossing laths or other thin strips of material * Lattice (music), an organized grid model of pitch ratios * Lattice (pastry), an orna ...
. *p3 (333): 3×3-fold; ''not'' the rotation group of any lattice (every lattice is upside-down the same, but that does not apply for this symmetry); it is e.g. the rotation group of the regular triangular tiling with the equilateral triangles alternatingly colored. *p4 (442): 2×4-fold, 2×2-fold; rotation group of a
square In Euclidean geometry, a square is a regular quadrilateral, which means that it has four equal sides and four equal angles (90-degree angles, π/2 radian angles, or right angles). It can also be defined as a rectangle with two equal-length adj ...
lattice. *p6 (632): 1×6-fold, 2×3-fold, 3×2-fold; rotation group of a
hexagonal In geometry, a hexagon (from Greek , , meaning "six", and , , meaning "corner, angle") is a six-sided polygon. The total of the internal angles of any simple (non-self-intersecting) hexagon is 720°. Regular hexagon A '' regular hexagon'' has ...
lattice. *2-fold rotocenters (including possible 4-fold and 6-fold), if present at all, form the translate of a lattice equal to the translational lattice, scaled by a factor 1/2. In the case translational symmetry in one dimension, a similar property applies, though the term "lattice" does not apply. *3-fold rotocenters (including possible 6-fold), if present at all, form a regular hexagonal lattice equal to the translational lattice, rotated by 30° (or equivalently 90°), and scaled by a factor \frac \sqrt *4-fold rotocenters, if present at all, form a regular square lattice equal to the translational lattice, rotated by 45°, and scaled by a factor \frac \sqrt *6-fold rotocenters, if present at all, form a regular hexagonal lattice which is the translate of the translational lattice. Scaling of a lattice divides the number of points per unit area by the square of the scale factor. Therefore, the number of 2-, 3-, 4-, and 6-fold rotocenters per primitive cell is 4, 3, 2, and 1, respectively, again including 4-fold as a special case of 2-fold, etc. 3-fold rotational symmetry at one point and 2-fold at another one (or ditto in 3D with respect to parallel axes) implies rotation group p6, i.e. double translational symmetry and 6-fold rotational symmetry at some point (or, in 3D, parallel axis). The translation distance for the symmetry generated by one such pair of rotocenters is 2\sqrt times their distance.


See also

*
Ambigram An ambigram is a calligraphic design that has several interpretations as written. The term was coined by Douglas Hofstadter in 1983. Most often, ambigrams appear as visually symmetrical words. When flipped, they remain unchanged, or they mutate ...
*
Axial symmetry Axial symmetry is symmetry around an axis; an object is axially symmetric if its appearance is unchanged if rotated around an axis.
*
Crystallographic restriction theorem The crystallographic restriction theorem in its basic form was based on the observation that the rotational symmetries of a crystal are usually limited to 2-fold, 3-fold, 4-fold, and 6-fold. However, quasicrystals can occur with other diffraction ...
*
Lorentz symmetry In relativistic physics, Lorentz symmetry or Lorentz invariance, named after the Dutch physicist Hendrik Lorentz, is an equivalence of observation or observational symmetry due to special relativity implying that the laws of physics stay the same ...
*
Point groups in three dimensions In geometry, a point group in three dimensions is an isometry group in three dimensions that leaves the origin fixed, or correspondingly, an isometry group of a sphere. It is a subgroup of the orthogonal group O(3), the group of all isometries tha ...
*
Screw axis A screw axis (helical axis or twist axis) is a line that is simultaneously the axis of rotation and the line along which translation of a body occurs. Chasles' theorem shows that each Euclidean displacement in three-dimensional space has a scre ...
*
Space group In mathematics, physics and chemistry, a space group is the symmetry group of an object in space, usually in three dimensions. The elements of a space group (its symmetry operations) are the rigid transformations of an object that leave it unchan ...
*
Translational symmetry In geometry, to translate a geometric figure is to move it from one place to another without rotating it. A translation "slides" a thing by . In physics and mathematics, continuous translational symmetry is the invariance of a system of equatio ...


References

*


External links

* {{Commons category-inline, Rotational symmetry
Rotational Symmetry Examples
from Math Is Fun Symmetry Binocular rivalry